F-111.net

The website dedicated to all variants of the F-111

General Dynamics F-111 Aardvark

The General Dynamics F-111 Aardvark  is a retired American supersonic, medium-range inter dictor and tactical attack aircraft that also filled the roles of strategic nuclear bomber, aerial reconnaissance, and electronic-warfare aircraft in its various versions. The word "aardvark" is Afrikaans for "earth pig" and reflects the look of the long nose of the aircraft that might remind one of the nose of the aardvark. Developed in the 1960s by General Dynamics, it entered service in 1967 with the United States Air Force. The Royal Australian Air Force (RAAF) also ordered the type and began operating F-111Cs in 1973. The F-111 pioneered several technologies for production aircraft, including variable-sweep wings, afterburning turbofan engines, and automated terrain-following radar for low-level, high-speed flight. Its design influenced later variable-sweep wing aircraft, and some of its advanced features have since become commonplace. The F-111 suffered a variety of problems during initial development. Several of its intended roles, such as an aircraft carrier-based naval interceptor with the F-111B, failed to materialize.USAF F-111s were retired during the 1990s with the F-111Fs in 1996 and EF-111s in 1998. The F-111 was replaced in USAF service by the F-15E Strike Eagle for medium-range precision strike missions, while the supersonic bomber role has been assumed by the B-1B Lancer. The RAAF was the last operator of the F-111, with its aircraft serving until December 2010.

Early requirements

The May 1960 U-2 incident, in which an American CIA U-2 spy plane was shot down over the USSR, stunned the United States government. Besides greatly damaging US-Soviet relations, the incident showed that the Soviet Union had developed a surface-to-air missile that could reach aircraft above 60,000 feet (18,000 meters). The United States Air Force Strategic Air Command (SAC) and the RAF Bomber Command's plans to send subsonic, high-altitude B-47 and V bomber formations into the USSR were now much less viable. By 1960, SAC had begun moving to low-level penetration which greatly reduced radar detection distances. At the time, SAMs were ineffective against low-flying aircraft, and interceptor aircraft had less of a speed advantage at low altitudes. The Air Force's Tactical Air Command (TAC) was largely concerned with the fighter-bomber and deep strike/interdiction roles. TAC was in the process of receiving its latest design, the Republic F-105 Thunderchief, which was designed to deliver nuclear weapons fast and far, but required long runways. A simpler variable geometry wing configuration with the pivot points farther out from the aircraft's centerline was reported by NASA in 1958, which made swing-wings viable. This led Air Force leaders to encourage its use. In June 1960, the USAF issued specification SOR 183 for a long-range interdiction/strike aircraft able to penetrate Soviet air defenses at very low altitudes and high speeds. The specification also called for the aircraft to operate from short, unprepared airstrips.In the 1950s, the United States Navy sought a long-range, high-endurance interceptor aircraft to protect its carrier battle groups against long-range anti-ship missiles launched from Soviet jet bombers and submarines. The Navy needed a fleet air defense (FAD) fighter with a more powerful radar, and longer range missiles than the F-4 Phantom II to intercept both enemy bombers and missiles. Seeking a FAD fighter, the Navy started with the subsonic, straight-winged aircraft, the Douglas F6D Missileer in the late 1950s. The Missileer was designed to carry six long-range missiles and loiter for five hours, but would be defenseless after firing its missiles. The program was formally canceled in 1961. The Navy had tried variable geometry wings with the XF10F Jaguar, but abandoned it in the early 1950s. It was NASA's simplification which made the variable geometry wings practical. By 1960, increases in aircraft weights required improved high-lift devices, such as variable geometry wings. Variable geometry offered high speeds, and maneuverability with heavier payloads, long range, and the ability to take off and land in shorter distances

Tactical Fighter Experimental (TFX)

The U.S. Air Force and Navy were both seeking new aircraft when Robert McNam ara was appointed Secretary of Defense in January 1961. The aircraft sought by the two armed services shared the need to carry heavy armament and fuel loads, feature high supersonic speed, twin engines and two seats, and probably use variable geometry wings. On 14 February 1961, McNamara formally directed the services to study the development of a single aircraft that would satisfy both requirements. Early studies indicated that the best option was to base the design on the Air Force requirement, and use a modified version for the Navy. In June 1961, Secretary McNamara ordered the go ahead of Tactical Fighter Experimental (TFX), despite Air Force and Navy efforts to keep their programs separate.

The side-by-side seating adopted in the F-111The Air Force and the Navy could agree only on swing-wing, two-seat, twin-engine design features. The Air Force wanted a tandem-seat aircraft for low-level penetration ground-attack, while the Navy wanted a shorter, high altitude interceptor with side-by-side seating to allow the pilot and radar operator to share the radar display. Also, the Air Force wanted the aircraft designed for 7.33 g with Mach 2.5 speed at altitude and Mach 1.2 speed at low level with an approximate length of 70 ft (21.3 m). The Navy had less strenuous requirements of 6 g with Mach 2 speed at altitude and high subsonic speed (approx. Mach 0.9) at low level with a length of 56 ft (17.1 m). The Navy also wanted the aircraft with a nose large enough for a 48 in (1.2 m) diameter radar dish.McNamara developed a basic set of requirements for TFX based largely on the Air Force's requirements and, on 1 September 1961, ordered the Air Force to develop it. A request for proposals (RFP) for the TFX was provided to industry in October 1961. In December, proposals were received from Boeing, General Dynamics, Lockheed, McDonnell, North American and Republic. The evaluation group found all the proposals lacking, but Boeing and General Dynamics were selected to submit enhanced designs. Boeing's proposal was recommended by the selection board in January 1962, with the exception of the engine, which was not considered acceptable. Switching to a crew escape capsule, instead of ejection seats and alterations to radar and missile storage were also needed. Both companies provided updated proposals in April 1962. Air Force reviewers favored Boeing's offering, while the Navy found both submissions unacceptable for its operations. Two more rounds of updates to the proposals were conducted, with Boeing being picked by the selection board.In November 1962, McNamara selected General Dynamics' proposal due to its greater commonality between Air Force and Navy versions. The Boeing aircraft shared less than half of the major structural components. General Dynamics signed the TFX contract in December 1962. A Congressional investigation followed, but would not change the selection


First F-111 to fly. Maiden flight 21 December 1964, crewed by Dick Johnson and Val Prahl (GD Test Pilots).

F-111C A8-125 to A8-140 in storage at Carswell AFB.
Notice the light coloured underside of the aircraft, and
the GD aircraft number on the nose wheel doors.
(photo courtesy of Harold Wise via his son Eric)

F-111C A8-141 to A8-148 in storage at Carswell AFB
(photo courtesy of Harold Wise via his son Eric)